

Hot Isostatic Pressing of Near Net Shaped Parts

a service offered by the Hempel Special Metals Group

content

- introduction
- description of the method
- supply chain aspects & quality management
- applications

Introduction

- What is hot isostatic pressing of near net shaped parts?
- Which are the technologies needed?
- What are the alternatives?
- Which are the comparative advantages?
- For which alloys and geometries is HIP an option?

What is hot isostatic pressing HEMPE of near net shaped parts?

It is a modern manufacturing method for shaped parts with a weight in the range between 10 kg and 15 tons. The method bases on powder metallurgy and combines some of the advantages of casting technology with those of forging technology.

Which are the technologies HEMPEL needed?

manufacturing of alloy powder by gas atomisation

powder consolidation by hot isostatic pressing

near net shaped product

What are the alternatives?

metal plates masterraw billets alloys powder material bars **MANUFACTURING** COMPACTION (SINTERING) MACHINING / JOINING FORGING **METHOD** CASTING

Which are the comparative advantages?

	casting	HIP	forging / machining
metallurgical	had	nood.	annd
quality	bad	good	good
material losses	low	low	low / high*
processing effort	low	low	low / high**

^{*} for complex shaped parts (i.e. valve bodies...)

^{**} for complex shaped and / or big parts

For which alloys and geometries is HIP an option?

► HIP is favoured where material costs & metallurgical requirements are high and/or where the total processing effort is high

Description of Method

- How does hot isostatic pressing work?
- ☐ How is a HIP part produced?
- How is the container manufactured?
- ☐ How does a HIP furnace function?
- ☐ How does a HIP'd part look like and how is it finished?

How does hot isostatic pressing work?

HIP is a method for the densification of metallic or ceramic material by application of a high isotropic pressure at temperatures below the melting point of the material

HIP can be used for

- elimination of closed porosities in castings or sintered parts
- (2) consolidation of a metal powder within a closed and evacuated metal container

How does hot isostatic pressing work?

densification of materials containing closed porosities

How does hot isostatic pressing work?

2) consolidation of metal powders

How is a HIP - part produced (next slide)?

- (1) a container with the shape of the desired product is designed and produced
- (2) the container is filled with a powder of the desired alloy
- (3) filled container is evacuated
- (4) the container is put into a hot isostatic press
- (5) the alloy powder is consolidated at elevated temperatures with the help of a big pressure by a sintering mechanism
- (6) pressed canister is cooled down
- (7) container material on the surface is removed by machining

processing sequence

1) weld a container with an intake

fill container with metal powder

3) evacuate and close container

4) press container in a HIP

5) remove container material by machining

- container is manufactured by welding of steel sheets, tubes and pipes
- weld design and integrity is critical
- weld seam can be examined with respect to leakages using He detectors

How does a HIP - furnace function?

- ☐ HIP is filled with an inert gas (Ar) at room temperature
- closed HIP is heated up and gas expands
- at high temperatures the powder within the canister consolidates by a sintering mechanism with the help of argon pressure all-round

How does a HIP'd part look like HEMPEL (b) and how is it finished?

as-hipped part with canisterwith fill tubes

machined & annealed drum

Canister material is perfectly bound to the base material by diffusion bonding. It can be removed by machining (simple shape) or by acid leaching (complex shape).

Supply Chain Aspects and Quality Management

- How does the overall value chain looks like?
- Which are the main quality drivers within the value chain?
- How is the part certified?

How does the overall value HEMPEL (chain looks like?

P/M route

container design and HIP and validation & alloy melting removal & heat treatment fabrication of certification of and atomisation finishing to a container of part product tolerance

forging route

P/M - HIP can also be used for manufacturing of forging billets

What are the main quality drivers in the value chain?

alloy melting and atomisation	design and fabrication of container	HIP and heat treatment of part	finishing to tolerance	validation & certification of product
control	1	!	! ! ! !	! ! ! !
measures			!	! ! !
chemical composition	weld compactness	shrinkage	dimensions	yield-strength
oxygen content	(leakage testing)	density	tolerances	tensile-strength
inclusion content		porosities		elongation
		grain size		impact energy
		homogeneity		

How is the material certified?

- for any part a certificate according to EN 10 204 3.1 can be issued
- this certificate gives information about alloy composition, (annealing) condition & mechanical properties
- further information like grain size, purity content and ultrasonic examination results can be added on demand
- for applications with special requirements, as for example pressure vessel applications, the parts can be released by means of a expert's (TüV) report

Applications

- Where is HIP already being used for critical applications?
- Which questions have to be raised when considering HIP?

Where is HIP already being used for critical applications?

- off-shore industry
 - shaped parts made of nickel based alloys and duplex stainless steels
- aero industry
 - gas turbine discs made of high temperature nickel based alloys
- medical industry
 - billets for forged and hot-rolled bars made of a cobalt based alloy are currently being produced by powder metallurgy; these bars are used for the manufacturing of implants by forging or machining

Which questions have to be asked when considering HIP?

- are there economic gains by using powder metallurgy (P/M) and hot isostatic pressing (HIP) instead of forging: costs, quality, raw material availability, through put time...
- can we select alloys that are difficult or even impossible to forge or cast: fine grained complex alloys / structures, alloys with enhanced precipitation hardenability, oxide dispersion strengthened alloys...
- are there possible quality gains provided by HIP alone:
 densification of casting porosities, densification of MIM parts, densification of sintered ceramics...
- are there new opportunities for the design of high temperature components: bimetallic compounds, internal cooling systems....

near net shape manufacturing of valuable alloys

manufacturing of a HIP'd drum from a nickel alloy to save material and machining costs

use of powder metallurgy for HEMPEL customisation of alloys

manufacturing of a HIP'd disc for an impeller made of a **customer specific nickel based alloy**, which is not available on the raw material market

improved material performance HEMPEL (b) realised by PM & HIP

HIP enables to adjust fine, isotropic microstructures in duplex stainless steels, which is fundamental to attain high strength - high toughness combinations

increased flexibility in design HEMPEL and material selection

Valve bodies and manifolds for oilfield uses can be produced by hot isostatic pressing of duplex stainless steel powder

MPIF – HIP council John C. Hebeisen

bi-metallic components manufactured by HIP

Hot isostatic pressing enables to produce bi-metallic compounds by powder-powder or by powder-solid body bonding.

The method is successfully applied for cladding of more ore less complex shaped parts like valve bodies.

realisation of internal cooling HEMPEL passages by diffusion bonding

Hot isostatic pressing enables to produce **hollow structures** by HIP'ing of a pipe or tube system with a metal powder. The realisation of internal cooling passages is a typical example.

contact: Hempel Special Metals AG

Dr. Alkan Göcmen Zürichstrasse 128

CH 8600 Dubendorf - Zurich

Switzerland

alkan.goecmen@hempel-metals.com

Tel: +41 (0)44 823 88 37 Fax: +41 (0)44 823 88 93